MATEMATYKA

 

Cele kształcenia - wymagania ogólne

 

I. Wykorzystanie i tworzenie informacji.

    Uczeń interpretuje i tworzy teksty o charakterze matematycznym, używa języka matematycznego do opisu rozumowania i uzyskanych wyników.

 

II. Wykorzystywanie i interpretowanie reprezentacji.

    Uczeń używa prostych, dobrze znanych obiektów matematycznych, interpretuje pojęcia matematyczne i operuje obiektami matematycznymi.

 

III. Modelowanie matematyczne.

    Uczeń dobiera model matematyczny do prostej sytuacji, buduje model matematyczny danej sytuacji.

 

IV. Użycie i tworzenie strategii.

    Uczeń stosuje strategię jasno wynikającą z treści zadania, tworzy strategię rozwiązania problemu.

 

V. Rozumowanie i argumentacja.

    Uczeń prowadzi proste rozumowania, podaje argumenty uzasadniające poprawność rozumowania.

 

 

Treści nauczania - wymagania szczegółowe

 

1. Liczby wymierne dodatnie. Uczeń:

1) odczytuje i zapisuje liczby naturalne dodatnie w systemie rzymskim (w zakresie do 3000);

2) dodaje, odejmuje, mnoży i dzieli liczby wymierne zapisane w postaci ułamków zwykłych lub rozwinięć dziesiętnych skończonych zgodnie z własną strategią obliczeń (także z wykorzystaniem kalkulatora);

3) zamienia ułamki zwykłe na ułamki dziesiętne (także okresowe), zamienia ułamki dziesiętne skończone na ułamki zwykłe;

4) zaokrągla rozwinięcia dziesiętne liczb;

5) oblicza wartości nieskomplikowanych wyrażeń arytmetycznych zawierających ułamki zwykłe i dziesiętne;

6) szacuje wartości wyrażeń arytmetycznych;

7) stosuje obliczenia na liczbach wymiernych do rozwiązywania problemów w kontekście praktycznym, w tym do zamiany jednostek (jednostek prędkości, gęstości itp.).

 

2. Liczby wymierne (dodatnie i niedodatnie). Uczeń:

1) interpretuje liczby wymierne na osi liczbowej. Oblicza odległość między dwiema liczbami na osi liczbowej;

2) wskazuje na osi liczbowej zbiór liczb spełniających warunek typu: x≥3, x<5

3) dodaje, odejmuje, mnoży i dzieli liczby wymierne;

4) oblicza wartości nieskomplikowanych wyrażeń arytmetycznych zawierających liczby wymierne.

 

3. Potęgi. Uczeń:

1) oblicza potęgi liczb wymiernych o wykładnikach naturalnych;

2) zapisuje w postaci jednej potęgi: iloczyny i ilorazy potęg o takich samych podstawach, iloczyny i ilorazy potęg o takich samych wykładnikach oraz potęgę potęgi (przy wykładnikach naturalnych);

3) porównuje potęgi o różnych wykładnikach naturalnych i takich samych podstawach oraz porównuje potęgi o takich samych wykładnikach naturalnych i różnych dodatnich podstawach;

4) zamienia potęgi o wykładnikach całkowitych ujemnych na odpowiednie potęgi o wykładnikach naturalnych;

5) zapisuje liczby w notacji wykładniczej, tzn. w postaci a.10k, gdzie 1≤a<10 oraz k jest liczbą całkowitą.

 

4. Pierwiastki. Uczeń:

1) oblicza wartości pierwiastków drugiego i trzeciego stopnia z liczb, które są odpowiednio kwadratami lub sześcianami liczb wymiernych;

2) wyłącza czynnik przed znak pierwiastka oraz włącza czynnik pod znak pierwiastka;

3) mnoży i dzieli pierwiastki drugiego stopnia;

4) mnoży i dzieli pierwiastki trzeciego stopnia.

 

5. Procenty. Uczeń:

1) przedstawia część pewnej wielkości jako procent lub promil tej wielkości i odwrotnie;

2) oblicza procent danej liczby;

3) oblicza liczbę na podstawie danego jej procentu;

4) stosuje obliczenia procentowe do rozwiązywania problemów w kontekście praktycznym, np. oblicza ceny po podwyżce lub obniżce o dany procent, wykonuje obliczenia związane z VAT, oblicza odsetki dla lokaty rocznej.

 

6. Wyrażenia algebraiczne. Uczeń:

1) opisuje za pomocą wyrażeń algebraicznych związki między różnymi wielkościami;

2) oblicza wartości liczbowe wyrażeń algebraicznych;

3) redukuje wyrazy podobne w sumie algebraicznej;

4) dodaje i odejmuje sumy algebraiczne;

5) mnoży jednomiany, mnoży sumę algebraiczną przez jednomian oraz, w nietrudnych przykładach, mnoży sumy algebraiczne;

6) wyłącza wspólny czynnik z wyrazów sumy algebraicznej poza nawias;

7) wyznacza wskazaną wielkość z podanych wzorów, w tym geometrycznych i fizycznych.

 

7. Równania. Uczeń:

1) zapisuje związki między wielkościami za pomocą równania pierwszego stopnia z jedną niewiadomą, w tym związki między wielkościami wprost proporcjonalnymi i odwrotnie proporcjonalnymi;

2) sprawdza, czy dana liczba spełnia równanie stopnia pierwszego z jedną niewiadomą;

3) rozwiązuje równania stopnia pierwszego z jedną niewiadomą;

4) zapisuje związki między nieznanymi wielkościami za pomocą układu dwóch równań pierwszego stopnia z dwiema niewiadomymi;

5) sprawdza, czy dana para liczb spełnia układ dwóch równań stopnia pierwszego z dwiema niewiadomymi;

6) rozwiązuje układy równań stopnia pierwszego z dwiema niewiadomymi;

7) za pomocą równań lub układów równań opisuje i rozwiązuje zadania osadzone w kontekście praktycznym.

 

8. Wykresy funkcji. Uczeń:

1) zaznacza w układzie współrzędnych na płaszczyźnie punkty o danych współrzędnych;

2) odczytuje współrzędne danych punktów;

3) odczytuje z wykresu funkcji: wartość funkcji dla danego argumentu, argumenty dla danej wartości funkcji, dla jakich argumentów funkcja przyjmuje wartości dodatnie, dla jakich ujemne, a dla jakich zero;

4) odczytuje i interpretuje informacje przedstawione za pomocą wykresów funkcji (w tym wykresów opisujących zjawiska występujące w przyrodzie, gospodarce, życiu codziennym);

5) oblicza wartości funkcji podanych nieskomplikowanym wzorem i zaznacza punkty należące do jej wykresu.

 

 

9. Statystyka opisowa i wprowadzenie do rachunku prawdopodobieństwa. Uczeń:

1) interpretuje dane przedstawione za pomocą tabel, diagramów słupkowych i kołowych, wykresów;

2) wyszukuje, selekcjonuje i porządkuje informacje z dostępnych źródeł;

3) przedstawia dane w tabeli, za pomocą diagramu słupkowego lub kołowego;

4) wyznacza średnią arytmetyczną i medianę zestawu danych;

5) analizuje proste doświadczenia losowe (np. rzut kostką, rzut monetą, wyciąganie losu) i określa prawdopodobieństwa najprostszych zdarzeń w tych doświadczeniach (prawdopodobieństwo wypadnięcia orła w rzucie monetą, dwójki lub szóstki w rzucie kostką, itp.).

 

10. Figury płaskie. Uczeń:

1) korzysta ze związków między kątami utworzonymi przez prostą przecinającą dwie proste równoległe;

2) rozpoznaje wzajemne położenie prostej i okręgu, rozpoznaje styczną do okręgu;

3) korzysta z faktu, że styczna do okręgu jest prostopadła do promienia poprowadzonego do punktu styczności;

4) rozpoznaje kąty środkowe;

5) oblicza długość okręgu i łuku okręgu;

6) oblicza pole koła, pierścienia kołowego, wycinka kołowego;

7) stosuje twierdzenie Pitagorasa;

8) korzysta z własności kątów i przekątnych w prostokątach, równoległobokach, rombach i w trapezach;

9) oblicza pola i obwody trójkątów i czworokątów;

10) zamienia jednostki pola;

11) oblicza wymiary wielokąta powiększonego lub pomniejszonego w danej skali;

12) oblicza stosunek pól wielokątów podobnych;

13) rozpoznaje wielokąty przystające i podobne;

14) stosuje cechy przystawania trójkątów;

15) korzysta z własności trójkątów prostokątnych podobnych;

16) rozpoznaje pary figur symetrycznych względem prostej i względem punktu. Rysuje pary figur symetrycznych;

17) rozpoznaje figury, które mają oś symetrii, i figury, które mają środek symetrii. Wskazuje oś symetrii i środek symetrii figury;

18) rozpoznaje symetralną odcinka i dwusieczną kąta;

19) konstruuje symetralną odcinka i dwusieczną kąta;

20) konstruuje kąty o miarach 60°, 30°, 45°;

21) konstruuje okrąg opisany na trójkącie oraz okrąg wpisany w trójkąt;

22) rozpoznaje wielokąty foremne i korzysta z ich podstawowych własności.

 

11. Bryły. Uczeń:

1) rozpoznaje graniastosłupy i ostrosłupy prawidłowe;

2) oblicza pole powierzchni i objętość graniastosłupa prostego, ostrosłupa, walca, stożka, kuli (także w zadaniach osadzonych w kontekście praktycznym);

3) zamienia jednostki objętości.

(Treść załącznika dla etapu edukacyjnego zostanie opublikowana w późniejszym terminie)